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SUMMARY

DNA damage often induces heterogeneous cell-fate responses, such as cell-cycle arrest and apoptosis.
Through single-cell RNA sequencing (scRNA-seq), we characterize the transcriptome response of cultured
colon cancer cell lines to 5-fluorouracil (5FU)-induced DNA damage. After 5FU treatment, a single population
of colon cancer cells adopts three distinct transcriptome phenotypes, which correspond to diversified cell-
fate responses: apoptosis, cell-cycle checkpoint, and stress resistance. Although some genes are regulated
uniformly across all groups of cells, many genes showed group-specific expression patterns mediating DNA
damage responses specific to the corresponding cell fate. Some of these observations are reproduced at the
protein level by flow cytometry and are replicated in cells treated with other 5FU-unrelated genotoxic drugs,
camptothecin and etoposide. This work provides a resource for understanding heterogeneous DNA damage
responses involving fractional killing and chemoresistance, which are among the major challenges in current
cancer chemotherapy.

INTRODUCTION

Genotoxic chemotherapy is one of the most widely used anti-
cancer treatments that utilize the sensitivity of cancer cells to
DNA-damage-induced cell death. DNA damage can induce het-
erogeneous cell-fate responses, such as apoptosis, cell-cycle
arrest, and chemoresistant survival. These heterogeneous fate
responses are often the basis of fractional cell killing and tumor
recurrence, which have been among the most significant chal-
lenges in cancer treatment.
Through extensive studies, many molecular sensors, path-

ways, and mediators of the DNA damage response have been
characterized (Harper and Elledge, 2007; Jackson and Bartek,
2009). Since the cell fates of individual cells after DNA damage
are distinct from each other, the DNA damage response is now
being characterized at the single-cell level by using live-cell re-
porters monitoring the status of DNA-damage-responsive com-
ponents. These studies showed that longitudinal patterns of p53
(Hafner et al., 2019; Paek et al., 2016) or p21/CDKN1A expres-
sion (Barr et al., 2017; Hsu et al., 2019) are heterogeneous across

the population and serve as good indicators for cell fate after
genotoxic injury. These findings also suggested that cells under-
going different fate responses may adopt distinct types of gene
expression programs. Since distinct fate responses would
require regulation of many genes, it is necessary to systemati-
cally profile single-cell transcriptomes, which could lead to a
better understanding of the molecular heterogeneity in DNA
damage responses.
Colon cancer is the third most common cancer worldwide,

and it is often treated with genotoxic chemotherapy using 5-fluo-
rouracil (5FU) (Kuipers et al., 2015). Accordingly, 5FU treatment
in colon cancer cell lines has been often used to investigate
the cancer cell response to DNA damage (Bunz et al., 1999).
Particularly, how cells alter their transcriptome in response to
5FU-induced DNA damage has been extensively characterized
in this system (Chang et al., 2014; Kho et al., 2004; Sánchez
et al., 2014; Wei et al., 2006). Using this cell-culture model of co-
lon cancer chemotherapy, we characterized the individual cell
response to genotoxic 5FU treatments using single-cell RNA
sequencing (scRNA-seq) technology (Figure 1A). By analyzing
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DNA-damage-induced gene expression at the transcriptome
level, we were able to identify major transcriptome phenotypes
after DNA damage and relate them to DNA-damage-induced
cell-fate responses that include apoptosis and cell-cycle check-
point (Figure 1B). We also identified that, in the single-cell popu-
lation, two different DNA-damage-induced genes could be either
co-expressed or expressed in a mutually exclusive pattern (Fig-

ure 1C). Finally, using flow cytometry experiments, we assessed
whether the single-cell transcriptomic features could faithfully
reflect the patterns of single-cell protein expression and cell-
fate responses (Figure 1D). Collectively, this work paints a
comprehensive picture of distinct single-cell transcriptomic pro-
files that closely reflect the heterogeneous cell-fate responses
after DNA damage.

D

A

B

C

Figure 1. Resource Overview
(A) RKO, HCT116, and SW480 cells were 5FU treated and subjected to Drop-seq.

(B) DNA damage responses were characterized at the single-cell transcriptome level (left). Major transcriptome phenotypes were identified (center), and the

relationships between these phenotypes and cell-fate outputs were investigated (right).

(C) The correlations betweenDNA-damage-induced expression patterns of individual genes were investigated. A hypothetical pair of two genes (gene A and gene

B) may be co-expressed (upper path) or expressed in a mutually exclusive pattern (lower path) across single cells.

(D) Major findings from the scRNA-seq data were followed up by flow cytometry.

See also Figure S1.
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RESULTS

scRNA-seq Profiling Precisely Captures Cell-Line
Identity and DNA Damage Response
For this study, we used RKO, HCT116, and SW480 cells, which
are among the most frequently used colon cancer cell lines and
represent distinct oncogenic features with respect to genetic
mutations and genomic instability (Ahmed et al., 2013). As illus-
trated in Figure 1A, we treated these cell lines with 5FU. Some of
the mRNAs highly induced by DNA damage—such as CDKN1A,
which mediates p53-dependent cell-cycle arrest—were accom-
panied by strong upregulation of the corresponding protein
levels at 24 h after 5FU treatment (Figure S1A).
Untreated or 5FU-treated cell lines were pooled and subjected

to Drop-seq (Macosko et al., 2015; Figure 1A). We performed
Drop-seq in 10 independent experiments with different combi-
nations of 5FU-treated and untreated cells (Figure S1B). After a
series of quality control processes (Figures S1C and S1D),
each barcoded droplet was de-multiplexed using the genetic in-
formation captured in mRNA sequences (Kang et al., 2018), as
described in STAR Methods. A total of 10,421 single-cell tran-
scriptome profiles were determined from untreated and 5FU-
treated RKO (3,053 cells), HCT116 (2,699 cells), and SW480
(4,669 cells) cell lines (Figure S1E). These cell lines exhibited
distinct transcriptomic profiles, as visualized by principal
component analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), and uniform manifold approximation and
projection (UMAP) (Figure S1F; Becht et al., 2018; van der
Maaten and Hinton, 2008).
For all three cell lines in t-SNE and UMAP manifolds, 5FU-

treated cells were clustered in locations that were distinct from
untreated cells (Figure S1G), indicating that the 5FU-induced
DNA damage substantially altered the single-cell transcriptomes
of these cell lines.
Expression of classical DNA damage response genes, such as

CDKN1A,MDM2, andGADD45A, which are targets of the tumor
suppressor p53, were pronouncedly upregulated after 5FU treat-
ment in p53-wild-type RKO andHCT116 cells but not so strongly
in p53-mutated SW480 cells (Figure S1H). However, 5FU induc-
tion of these genes was statistically significant in all cell lines
examined (Figure S1H). Likewise, CCNB1, CDKN3, and
CDC20, mitosis-controlling genes that are downregulated after
5FU stress (Kho et al., 2004), were strongly reduced in RKO
and HCT116 cells but less so in SW480 cells (Figure S1I). In
contrast, DNA-damage-dependent regulation of some genes,
such as MAP1LC3B (upregulated), RPL10A, and RPL27A
(downregulated), was robustly observed in all three cell lines
(Figure S1J).

5FU Treatment Induces Three Distinct Cell Groups with
Unique Transcriptome Landscapes
We initially focused on RKO cells, which exhibited the most
pronounced DNA damage response in our dataset (Figures
S1H–S1J). First, we explored the heterogeneity of single-cell
transcriptome profiles with high-dimensional clustering. We
identified four major clusters (untreated, apoptotic, checkpoint,
and stress; or U, A, C, and S, respectively, as shown in Figures
2A and 2B), where one cluster (untreated; n = 1,597) mainly con-

sists of untreated cells, while the other three clusters (apoptotic,
checkpoint, and stress; n = 800, 571, and 85, respectively) corre-
spond to 5FU-treated cells (Figures 2C and 2D). These clusters
weremanifested in both t-SNE (Figure 2A) and UMAP (Figure 2B)
manifolds, aswell as PCA (Figure 2E). Even a single batch of cells
exhibited the heterogeneity that corresponds to each of these
clusters (Figures S2A–S2D), indicating that the heterogeneous
response of DNA damage is observed across different doses
or batches of DNA damage treatment.
To infer biological characteristics relevant to each cluster, we

isolated the top 30 upregulated genes for each through differen-
tial expression analysis based on the non-parametric Wilcoxon
rank-sum test (Figure S2E; Table S1). Using the list of cluster-
specific top markers, we performed gene enrichment analysis
using the Gene Ontology database of biological pathways
(GO-BP) (Gene Ontology Consortium, 2015). Only 21 genes
were significantly upregulated in the cluster with untreated cells
(adjusted p < 0.05), and this gene list showed a weak enrichment
of genes with various housekeeping functions (adjusted p z
0.01; Figure 2F). This cluster with untreated cells was named
the untreated group (or U, as shown in Figure 2G). In contrast,
5FU-treated clusters exhibited much stronger enrichment of
genes involved in various DNA damage response processes
(adjusted p < 0.0001; Figure 2F). The largest 5FU-treated cluster
was highly enriched with genes involved in the apoptotic
pathway (Figure 2F); therefore, we named this group the
apoptotic group (or A, as shown in Figure 2G), according to its
presumed biological characteristics. In contrast, the second
largest 5FU-treated cluster was enriched with DNA-damage-
induced cell-cycle checkpoint genes (Figure 2F); therefore, we
named this group the checkpoint group (or C, as shown in Fig-
ure 2G). The smallest cluster was enriched with stress response
genes (Figure 2F) and was named the stress group (or S, as
shown in Figure 2G).
We also found that proportions across groups were substan-

tially changed according to the dose of 5FU treatment (Figures
S2A–S2D). Although checkpoint group cells were abundantly
found across all doses of 5FU treatment, apoptotic group cells
were only abundant in cells treated with 10 and 50 mM 5FU
and rarely found in cells treated with 200 mM 5FU (Figures
S2A–S2D). It is possible that high levels of DNA damage by
200 mM 5FU accelerated the apoptotic progression of apoptotic
group cells, facilitating apoptosis-associated RNA decay
(Thomas et al., 2015), which will render the population undetect-
able from the scRNA-seq dataset. In contrast to the apoptotic
group, the numbers of cells in the checkpoint and stress groups
were not reduced at the high 5FU dose (Figures S2B–S2D), indi-
cating that the cells in these groups were relatively resistant to
the genotoxic stress induced by 5FU.
Another interesting observation is that, in the apoptotic and

checkpoint groups of cells, dose-dependent subclusters were
identified in both t-SNE and UMAP manifolds (Figures 2C and
2D); the apoptotic group has two subclusters corresponding to
10 and 50 mM 5FU treatments, and the checkpoint group has
three subclusters corresponding to 10, 50, and 200 mM 5FU
treatments (Figures 2C and 2D). Since granulation of the dose-
dependent subclusters was coherently observed across the
different experimental batches (Figure S2A), these subclusters
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are likely to represent dose-dependent biological variations in
the transcriptional responses to DNA damage.

Different 5FU-Induced Cell Groups Exhibit Distinct
Patterns of p53 Target Gene Expression
Interestingly, when the pathway enrichment analysis was per-
formed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa and Goto, 2000), all 5FU-treated
groups identified the p53 signaling pathway as the top pathway
enriched in each group (Figure 3A). Further inspection showed
that more than half of the marker genes specific to the apoptotic
or checkpoint groups are associated with the p53 pathway (Fig-
ure 3A, gene counts are given in parentheses; Figures 3B–3D,
gene lists). Intriguingly, a vast majority (93%) of these marker

genes were exclusively found in a single group, and even the re-
maining three genes (MDM2,GADD45A, and RRM2B; 7%) were
found only in two groups but not in the third (Figures 3B–3D). For
instance, MDM2, a negative-feedback regulator of p53, was
highly expressed in the checkpoint and stress groups but less
so in the apoptotic group (Figures 3C and 3D, pink boxes). In
contrast, ISG15, a recently identified positive-feedback regu-
lator of p53 (Park et al., 2016), was upregulated only in the
apoptotic group but not in the checkpoint or stress group (Fig-
ure 3B, yellow box).
Based on these preliminary observations, we performed a

more thorough analysis of p53 target gene transcription, using
a recently assembled list of p53 target genes in the human
genome (Fischer, 2017). From this list, we found that most of

A B E

C D

F

G

Figure 2. 5FU Treatment Induces Three Distinct Types of Single-Cell Transcriptome Responses
(A–D) t-SNE and UMAP manifolds colored with group identity (A and B) and 5FU dose (C and D).

(E) PCA manifold of RKO cells colored with group identity (left) and 5FU dose (right).

(F) GO-BP enrichment analysis of the top 30 markers for each group. Top 5 GO-BP terms, ordered by adjusted p values (P.adj), are summarized in the table. FC,

fold enrichment.

(G) A schematic model depicting 5FU-induced transcriptomic responses of RKO cells.

See also Figure S2 and Table S1.
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the p53 targets were induced in all three 5FU-treated groups
compared to the untreated group (Figure 3E) and that their in-
duction was generally higher in the apoptotic and stress groups
than in the checkpoint group (Figure 3E). However, the check-
point group exhibited the strongest expression of CDKN1A and
MDM2 (Figures 3F and 3G). The pro-apoptotic p53 target
genes such as PMAIP1, FAS, and IKBIP (Figure 3F) and p53
target genes important for stress resistance such as ATF3,
XPC, and SESNs (Figure 3G), were the most highly expressed
in the apoptotic and stress groups, respectively. Group-spe-
cific expressions of these group-specific p53 target genes
were also manifested in the gene expression feature plots (Fig-
ures 3H–3J).
We processed our scRNA-seq data through Markov affinity-

based graph imputation of cells (MAGIC) (van Dijk et al., 2018)
and observed clearer patterns in the group-specific gene
expression distributions (Figures S3A–S3C), compared to the re-
sults before imputation that suffer information sparsity and tech-
nical noise (Figures S3D–S3F). Using the imputed expressions,
we examined how different p53 pathway genes were co-ex-
pressed in different cell populations. Scatterplots of imputed
data clearly show that different cell groups exhibited different
patterns of p53 target gene expression after 5FU treatment (Fig-

ure 4A). The analyses indicated that the 5FU dose also affected
the single-cell expression of these genes (Figure 4B).
To further characterize the effects of dose and group on p53

target gene expression, we performed a granular analysis of
dose-dependent subclusters in each group of cells. Apoptotic-
group-specific PMAIP1 and FAS genes, as well as checkpoint-
group-specific CDKN1A and MDM2 genes, were more strongly
expressed when the cells were treated with 50 mM 5FU,
compared to the cells treated with 10 mM 5FU (Figures 4C and
4D). These genes were alsomore strongly expressed in their cor-
responding groups of cells (Figures 4C and 4D). The effects of
dose and group identity, as well as the synergistic interaction be-
tween them, showed strong statistical significance (p < 0.0001,
two-way ANOVA). However, interestingly, when the cells were
treated with 200 mM 5FU, apoptotic group cells were not
observed (Figures S2B–S2D), and checkpoint group cells
showed reduced expression levels of all of these four genes (Fig-
ures 4C and 4D). Stress-group-specific ATF3 and DDIT3 genes
were highly expressed in stress group cells, compared to those
in apoptotic or checkpoint group cells (Figure 4E). These results
demonstrate that cells exhibit heterogeneous patterns of p53
target gene expression, which might be associated with distinct
fate responses (Figure 4F).

A E F G

B

C

D

I

H

J

Figure 3. Diversified Patterns of p53 Target Gene Expression after DNA Damage
(A) Pathway enrichment analysis using the KEGG database. Counts in parentheses include genes whose involvement in p53 pathway was documented in the

literature but was not included in the KEGG database. P.adj, adjusted p value; FC, fold enrichment.

(B–D) Dot plot of the p53 pathway genes thatwere in the top 30markers for each group. The size of the dot reflects the percentage of cells expressing themarkers,

while the color encodes average expression levels across all cells within the group (blue indicates high). CNOT4 and SESNs were not in the top 30 markers but

were among the genes upregulated in the stress group.

(E–G) Average expression levels of individual p53 target genes in each group, normalized by their averaged expression in all cells, are presented in boxplot (E) and

correlation scatterplots (F and G). The list of p53 target genes was obtained from a recent review (Fischer, 2017). Among the 116 targets, 89 were detected in our

dataset and used for this analysis. Each dot in the scatterplots represents an individual p53 target gene. ***p < 0.001; ****p < 0.0001; ns, non-significant, in Tukey’s

multiple comparison test.

(H–J) Gene expression feature plots of representative group-specific marker genes. Approximate boundaries for each group are indicated by a dotted line.

See also Figure S3.
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Apoptotic and Checkpoint Groups Exhibit Distinct Cell-
Cycle Characteristics
From the scRNA-seq dataset, we estimated the stage of the cell
cycle for each cell by analyzing the expression of cell-cycle-spe-
cific genes (Nestorowa et al., 2016; Tirosh et al., 2016). The anal-
ysis suggested that the checkpoint group, as expected, had a
higher number of non-cycling cells (expressed as G1), compared
to the other groups (Figures S4A and S4B). In contrast, the cells
of the apoptotic group highly expressed several S and G2/M
marker genes, such as CCNE2, CDK1, and PCNA (Figure S4C).
The expression of these genes in the apoptotic group was even
significantly higher than that in the untreated group (Figure S4C;
p < 0.0001 for all genes and doses). However, other classical
markers of cell-cycle progression such as minichromosome
maintenance (MCM) (G1 to S progression), as well as cyclin B
and Aurora kinase genes (G2 toM progression), were downregu-
lated in the apoptotic group, compared to the untreated group
(Figure S4D). These results suggest that the apoptotic group is
not in a normal cell-cycling state, while the checkpoint group is
in a classical cell-cycle arrest. However, as the cell-cycle estima-
tion from the scRNA-seq data is through a speculative algorithm
(Nestorowa et al., 2016; Tirosh et al., 2016), we further investi-
gated how different single-cell transcriptome groups are associ-
ated with specific cell-fate responses after the 5FU treatment.

Flow Cytometry Confirms Heterogeneous DNA Damage
Response at the Protein Level
CCNE2 and CDKN1A are among the top differentially regulated
genes distinguishing the apoptotic and checkpoint groups (Ta-
ble S1). Scatterplot analysis using imputed expression demon-
strated that, following 5FU treatment, most apoptotic group cells

showed a CCNE2-high and CDKN1A-low profile, while most
checkpoint group cells exhibited a CCNE2-low and CDKN1A-
high profile (Figure 5A). Stress group cells were located between
the apoptotic and checkpoint groups but were very small in
numbers. In contrast to the DNA-damage-treated cells, the un-
treated group cells appeared as a single tight cluster (Figure 5A).
To monitor CCNE2 and CDKN1A protein expression across

single cells, we performed flow cytometry. Untreated cells
showed a single dense population of relatively low expression
of the two protein markers (U in Figure 5B). 5FU treatment
induced stronger expression of these markers; however, as
observed from the scRNA-seq data (Figure 5A), the induction
of CCNE2 and CDKN1A was largely mutually exclusive, forming
two distinct populations: CCNE2-high, CDKN1A-low apoptotic
group cells (A in Figure 5B) and CCNE2-low, CDKN1A-high
checkpoint group cells (C in Figure 5B). A similar separation of
cell groupswas observedwith different doses of 5FU (Figure 5C).
At the highest concentration (200 mM), 5FU treatment induced
significantly higher numbers of double-negative (CCNE2-low,
CDKN1A-low) cells, which appeared to be dead cells after exten-
sive DNA damage and apoptosis (Figure 5C).
The imputed scRNA-seq data indicate that MDM2, another

checkpoint group marker, could also be used to distinguish the
apoptotic and checkpoint groups (Figure 5D). Flow cytometry
indeed identified the CCNE2-high, MDM2-low apoptotic group
and the CCNE2-low, MDM2-high checkpoint group in 5FU-
treated cells (Figure 5E).
We also tested whether these observations could be general-

ized to other types of genotoxic chemotherapy treatmentsbeyond
5FU. Treatment with camptothecin and etoposide also induced
the emergence of theCCNE2-high, CDKN1A-low apoptotic group

A F

B

C D E

Figure 4. Single-Cell Heterogeneity in p53 Target Gene Expression after DNA Damage
(A and B) Scatterplots of indicated gene expression in single cells, imputed throughmagic. Each dot represents an individual cell indicated in color according to its

group identity (A) or 5FU dose (B).

(C–E) Analyses of p53 target gene expression (y axis) across different subgroups of cells partitioned with 5FU dose (x axis) and group identity (color). Untreated,

apoptotic, and checkpoint groups were analyzed. Because the stress group contained a very small number of cells (n < 50), it was only analyzed for stress group-

specific markers (E), which produced statistically interpretable results. Data are presented as mean ± SEM. ****p < 0.0001, in Sidak’s multiple comparison test

between the apoptotic and checkpoint groups (C and D) or between the stress group and all the other groups (E).

(F) Schematic model depicting the group-specific expression of p53 target genes.

See also Figure S4.
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and the CCNE2-low, CDKN1A-high checkpoint group (Figure 5F).
Thus, the heterogeneous single-cell response toDNAdamageap-
pears to be conserved across different genotoxic drugs.

Cells in the Apoptotic Group Undergo Apoptosis
In forward scatter versus side scatter (FSC/SSC) analyses, cells
in the checkpoint and apoptotic groups showed different char-
acteristics. Compared to the checkpoint group cells, the
apoptotic group cells had more variations in FSC values, which
is indicative of variable cell size, while exhibiting somewhat lower
SSC values, which is indicative of a decreased intracellular
complexity (Figures S5A and S5B).
To further characterize the checkpoint group and apoptotic

group cells, we performed the DNA content analysis. 5FU treat-
ment induced a strong accumulation of a sub-G1 population,
which is suggestive of cell death (Figure 6A). To perform

group-specific analysis, we partitioned the 5FU-treated cell pop-
ulation into the CCNE2-high, CDKN1A-low apoptotic group and
the CCNE2-low, CDKN1A-high checkpoint group (Figure 6B,
left) and analyzed their DNA contents separately (Figure 6B,
right). Interestingly, roughly half of the apoptotic group cells
appear as sub-G1 (blue in Figure 6B, right), indicating that the
apoptotic group contained many dying cells. In contrast, the
checkpoint group did not have sub-G1 cells, and most of the
cells were assigned to the G1 phase with a minor population in
the G2 phase (red in Figure 6B, right).
We also performed a converse analysis—we first gated the

entire sub-G1 population from the 5FU-treated cells (Figure 6C,
left) and analyzed the levels of CCNE2 and CDKN1A expression
(Figure 6C, center). Most of the sub-G1 population was almost
exclusively found in the apoptotic group but not in the check-
point group (Figure 6C, center).

A

B

C

F

E

D

Figure 5. Heterogeneous mRNA and Protein Expression in DNA Damage Response
(A–F) In (A) and (D), scatterplots of indicatedmRNA expression in single cells, imputed throughmagic. Each dot represents an individual cell colored with its group

identity (left), 5FU dose (center), or estimated cell-cycle phase (right).

(B, C, E, and F) Flow cytometry dot plots showing indicated protein expression. Percent cells in each quadrant gate are indicated. MFI, mean fluorescence

intensity.

See also Figure S5.
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Although almost half of the apoptotic group cells exhibited a
sub-G1 DNA profile, many cells in the apoptotic group still had
DNA contents greater than a diploid genome (Figures 6B and
6C). In addition, both apoptosis and necrosis can induce sub-
G1 cells (Darzynkiewicz et al., 1997). Therefore, to examine
whether the apoptotic group cells were, indeed, undergoing
apoptotic cell death, we monitored caspase cascade activation,
an authentic and specific marker of apoptosis (Srinivasan et al.,
1998). Flow cytometry showed that most of the CCNE2-high
apoptotic group cells expressed high levels of activated cas-
pase-3 (Figure 6D). In contrast, CCNE2-low checkpoint group
cells expressed relatively low levels of cleaved caspase-3
compared to the apoptotic group cells (Figure 6D). These results
demonstrate that cells in the apoptotic group were, indeed, un-
dergoing apoptosis.

Experiments using camptothecin and etoposide also pro-
duced results similar to the 5FU experiments. The apoptotic
group cells exhibited a sub-G1 DNA profile, while the checkpoint

group cells showed a G1-arrested DNA profile (Figures S5C and
S5D).

The Apoptotic Group Exhibits a Higher Level of DNA
Damage than the Checkpoint Group
Through phosphorylated histone H2AX (P-H2AX), a quantitative
marker for DNA damage (Sharma et al., 2012), we examined the
levels of DNA damage in single cells. Although the level of P-
H2AX was low in untreated control cells, CCNE2-low,
CDKN1A-high checkpoint group cells showed a slightly
increased level of P-H2AX staining (Figures 6E and 6F). In
contrast, CCNE2-high, CDKN1A-low apoptotic group cells
showed a much higher level of P-H2AX staining (Figures 6E
and 6F), indicating more severe DNA damage in the apoptotic
group cells. A higher level of DNA damage in the apoptotic group
might have promoted the apoptotic fate determination. Also,
caspase-activated DNases in the apoptotic cells (Enari et al.,
1998) might have produced even more double-strand DNA

A D

E

F

B

C

Figure 6. Flow Cytometry Verifies the Cell Fates of the Apoptotic and Checkpoint Groups
(A) DNA contents of control (left) and 5FU-treated (center) cells were comparedwith each other (right). Estimated cell-cycle stages were indicated by dotted green

lines (right).

(B) From the 5FU-treated cells (center panel in A), cells in the apoptotic and checkpoint groups were separately analyzed for their DNA content. Gating scheme is

shown in the left panel. The DNA content was separately analyzed for the gated apoptotic group (blue, right) or the checkpoint group (red, right).

(C) Thewhole 5FU-treated cells (left, same as center panel in A) were first gated on cell-cycle stages: sub-G1 (green; center) andG1/S/G2M (brown, blue, and red;

right) cells and the subsets are indicated on the flow cytometry plots showing the expression of CCNE2 and CDKN1A.

(D and E) Flow cytometry analysis of indicated protein expression.

(F) From the 5FU-treated cells (right panel in E), cells in the apoptotic and checkpoint groups were separately analyzed for their P-H2AX expression. Gating

scheme is shown in the left panel. P-H2AX expression by the cells of untreated (green), apoptotic (blue), and checkpoint (green) groups is indicated in the right

panel.

MFI, mean fluorescence intensity. See also Figure S6.

8 Cell Reports 32, 108077, August 25, 2020

Resource
ll

OPEN ACCESS



breaks. These results collectively confirm the presence of
distinct biological cell fates following DNAdamage and their rela-
tionship with CCNE2 and CDKN1A expression patterns.

The Stress Group Is Characterized by Expression of
Stress-Responsive Transcription Factors
The stress group is a small group of cells that were consistently
observed throughout the different doses and batches of 5FU
treatment. Stress group cells expressed high levels of stress-
responsive transcription factors, including ATF3 and FOS, as
well as their targets (Figures S6A and S6B; Table S1). SESN2,
a DNA-damage-inducible p53 target (Ho et al., 2016), was also
highly expressed in the stress group but less so in the other
groups (Figure 3D).
ATF3 and FOS, which are among the top stress-group-spe-

cific markers (Table S1), could be used to distinguish the stress
group from the other groups in an imputed scRNA-seq dataset
as the ATF3/FOS-high, CDKN1A-low group (Figures S6C and
S6D). Flow cytometry with antibodies to ATF3, FOS, and
CDKN1A identified such stress-group-like populations in the
5FU-treated cells (S in Figures S6E and S6F).

HCT116 Cells Exhibit 5FU-Induced Differentiation of
Apoptotic and Checkpoint Groups
Finally, we evaluated whether the observations in the RKO cell
line were reproduced in the HCT116 and SW480 cell lines.
HCT116 and SW480 cells showed a clear dose response in
altering the single-cell transcriptome profile after 5FU treatment
(Figures 7A and 7C). However, they also showed very strong
batch-dependent variations in the transcriptome (Figures 7B
and 7D) that were not seen in the RKO dataset (Figure S2A).
For instance, in the HCT116 dataset, the ‘‘0C’’ batch of untreated
group cells produced a transcriptome cluster that is distinct from
all the other batches (Figure 7B). Also, in the SW480 dataset, all
batches were clustered in different locations in the UMAP mani-
fold (Figure 7D). This strong batch effect made it difficult to
perform a systematic analysis on the HCT116 and SW480 data-
sets as was performed on the RKO dataset.
Therefore, we instead tested whether the patterns of hetero-

geneous DNA damage response, initially observed from the
RKO dataset, could be replicated in the HCT116 and SW480 da-
tasets. We examined the expression of the RKO group-specific
markers, such asCCNE2,CDKN1A, and ATF3, respectively rep-
resenting the apoptotic, checkpoint, and stress groups. In the
HCT116 dataset, we were able to identify two different groups
of cells, apoptotic-like and checkpoint-like groups (A and C,
respectively, in Figures 7E–7G), where CCNE2 and CDKN1A
expression was regulated in a diametrically opposite way.
HCT116 differentiation into apoptotic-like and checkpoint-like
groups was observed across all doses and experimental
batches of 5FU treatment (Figure S7A). However, we were un-
able to find specific cell clusters that represent the ATF3-high
stress-like group in the HCT116 dataset (Figure 7H). The
apoptotic-like and checkpoint-like groups (A and C, respec-
tively, in Figure 7I) in HCT116 not only showed contrasting
expression patterns of CCNE2 and CDKN1A but also differen-
tially expressed other cell-cycle-regulating genes, such as
PCNA and CDK1 (Figure 7J). These results indicate that

HCT116 cells exhibit heterogeneous cell-cycle responses, as
was observed in the RKO dataset.

Some Genes Are 5FU Regulated across All
Heterogeneous Populations of Cells
In contrast to the RKO and HCT116 cells, CCNE2 and CDKN1A
did not show contrasting gene expression patterns in the SW480
dataset, although their expression was slightly elevated after
5FU treatments throughout the population (Figures 7K, 7L, and
S7B). Likewise, ATF3 expression was induced after 5FU treat-
ment but did not show specific patterns of expression across
the single-cell population (Figures 7M and S7B). Therefore, the
heterogeneous transcriptome responses to 5FU, initially
observed from the RKO dataset, do not seem to be well
conserved in SW480 cells. Interestingly, some of the genes
whose expression is strongly affected by 5FU treatment in the
SW480 dataset, such as MAP1LC3B, MAP1LC3B2, FKBP3,
and RPL10A, showed a similar dose-dependent regulation in
the RKO and HCT116 datasets (Figures 7N–7P and S7C–S7E)
and across all the groups undergoing distinct fate responses
(Figures 7O and 7P). These results indicate that there are groups
of genes that are commonly regulated by 5FU treatment across
all heterogeneous populations of cells.

DISCUSSION

This study approached the heterogeneous DNA damage re-
sponses using scRNA-seq technology. We demonstrated that
5FU treatment induces three distinct transcriptome phenotypes
that are each different from the untreated cell transcriptome in
colon cancer cells. These distinct transcriptome phenotypes
turned out to be associated with the major cell-fate responses
to DNA damage, including apoptosis, cell-cycle arrest, and
stress response. Many DNA damage response genes showed
differential expression across the three cell groups, as summa-
rized in the Results section and Table S1.
In addition to depositing all the raw and processed

sequencing data into the Gene Expression Omnibus (GEO) re-
pository (see STARMethods for details), we also havemade our
dataset available to biological researchers through an
interactive online resource (https://lee.lab.medicine.umich.
edu/dna_damage), which has an intuitive graphical user inter-
face for exploring our scRNA-seq dataset. Using this online
tool, researchers can easily navigate the dataset, which has a
vast amount of information. For instance, they can examine
how individual genes are expressed across single cells before
and after 5FU treatments and how the specific gene expression
is correlated with the 5FU dose, group identity, batch identity,
or single-cell expression of other genes. This online tool can
also be used by researchers to test new hypotheses and
generate new data; therefore, it has the potential to accelerate
future research on DNA damage responses.
Although our dataset opens an avenue for exploring single-cell

DNA damage responses, there are a few limitations that we
should consider. First, our scRNA-seq dataset, by definition,
only contains information on RNA levels, not protein levels. There
is an inherent time delay between transcription and translation,
which can reduce the concordance between mRNA and protein
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levels (Liu et al., 2016). In the scRNA-seq dataset, the transcrip-
tional burst event (biological effect) and dropout event (technical
effect) can further decrease this concordance (Hicks et al.,
2018). Stress insults may substantially alter the steady-state
levels of protein expression through transcription-independent
mechanisms such as translational control or protein degradation
control (Liu et al., 2016). Therefore, abundance or scarcity of
mRNA species might not directly translate into changes in the
corresponding protein levels.

Because our work focuses on heterogeneous DNA damage re-
sponses, we preliminarily examined the expression of CCNE2 and
CDKN1A proteins, whose encoding mRNAs are among the top
markers for the apoptotic and checkpoint groups, respectively.
Comparative analysis of scRNA-seq and flow cytometry data indi-

cated that, at bothmRNA levels and protein levels, gene products
for CCNE2 and CDKN1A showed a mutually exclusive pattern of
gene expression. Furthermore, in each dataset, these bipartite
gene induction responses were correlated with different cell-fate
responses to DNA damage, as manifested by GO analyses and
cell-cycle estimation analyses (scRNA-seqdata), DNAcontent as-
says, caspase activity assays, and P-H2AX level assays (flow cy-
tometry data). Therefore, even though we cannot assume a linear
correlation between mRNA and protein levels, it is likely that the
expression levels ofCCNE2 and CDKN1A gene products are suf-
ficient to distinguish two different groups of cell populations un-
dergoing distinct cell-fate responses.
In addition to transcriptional regulation, CCNE2 and CDKN1A

are known to be post-transcriptionally regulated through protein

A B C D

E F G H I

J

N O

P

K L M

Figure 7. Conserved and Cell-Line-Specific Features of Single-Cell DNA Damage Response
(A–H and K–M) UMAP manifolds and gene expression feature plots of control and 5FU-treated HCT116 (A, B, and E–H) and SW480 (C, D, and K–M) cells. UMAP

manifolds were indicated in color by 5FU treatment dose (A and C), batch (B and D), group assignment (G), or indicated gene expression (E, F, H, and K–M).

(I, J, N, O, and P) Gene expression analyses (y axis) across different subgroups of cells partitioned with 5FU dose (x axis) and group identity (color). Untreated,

apoptotic, and checkpoint groups of HCT116 cells (I, J, and P); untreated, apoptotic, checkpoint, and stress groups of RKO cells (O); or entire SW480 cell

population (N) were analyzed. Data are presented as mean ± SEM. **p < 0.01; ****p < 0.0001, in Sidak’s multiple comparison test between apoptotic and

checkpoint groups (I and J).

See also Figure S7.
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degradation. CCNE2 is degraded by an E3 ligase complex con-
taining FBXW7 (Klotz et al., 2009), whose encoding mRNA is p53
inducible and upregulated in the apoptotic group (Figure 3B).
The FBXW7 upregulation might function in limiting the protein
level of CCNE2 in this group of cells. Likewise, CDKN1A is
degraded by MDM2 (Zhang et al., 2004), whose encoding
mRNA is upregulated in the checkpoint group (Figure 3C),
possibly limiting the CDKN1A protein expression in this group.
Interestingly, CDKN1A is also degraded by a PCNA-containing
protein complex (Sheng et al., 2019). Since PCNA was highly ex-
pressed in the apoptotic group (Figure S4C), PCNA may
contribute to accentuating bipartite CDKN1A protein expression
by further reducing CDKN1A levels in the apoptotic group of
cells, which already expresses low amounts of CDKN1A
mRNAs. Since multiple additional mechanisms can be involved
in determining the expression levels of proteins, future studies
should explore the single-cell proteome responses to DNA
damage.
Another limitation of our scRNA-seq dataset is that it was pro-

duced with a single DNA-damaging agent, 5FU. Although 5FU is
among the most frequently used genotoxic chemotherapy
agents, different types of DNA damage may produce different
patterns of heterogeneous DNA damage response. To address
this, we tested whether camptothecin and etoposide, two geno-
toxic drugs that are unrelated to 5FU, can produce bipartite DNA
damage responses in CCNE2 and CDKN1A expression. As
observed from the 5FU experiments, both etoposide and camp-
tothecin induced the emergence of apoptotic (CCNE2-high,
CDKN1A-low) and checkpoint (CCNE2-low, CDKN1A-high)
populations, which underwent corresponding cell-fate re-
sponses. Thus, these heterogeneous cell fate and gene expres-
sion patterns appear to be conserved in multiple DNA-damaging
chemotherapeutic agents.
Still, it is likely that at least some of the features described in

our data are specific to 5FU. 5FU is known to induce RNA dam-
age (Longley et al., 2003), which could compromise cellular pro-
tein quality and provoke endoplasmic reticulum (ER) stress.
Diverse ER-stress-responsive proteins, including ATF3, XBP1,
and DDIT3/CHOP, were strongly induced in the stress group of
cells after 5FU treatment. Thus, it is possible that some of these
transcriptional features are 5FU specific. The generation of addi-
tional scRNA-seq datasets in response to different types of
chemotherapeutic agents, and, most importantly, single-cell
characterization of in vivoDNA damage responses are important
future directions.
It should also be noted that our current scRNA-seq method

only captures a snapshot of the transcriptome at one time point:
after 24 h of 5FU treatment. The transcriptomic landscape of
5FU-treated cells is likely to change substantially over time.
For instance, CDKN1A expression levels are dynamically
changed with heterogeneous longitudinal patterns that can pre-
dict cell-fate consequences (Barr et al., 2017; Hsu et al., 2019;
Sheng et al., 2019). Our study presented here suggests that, in
addition to CDKN1A, many additional genes are differentially
regulated across the groups of cells undergoing distinct fate re-
sponses. Whether and how these differential expression pat-
terns are longitudinally maintained or altered should serve as a
focus for future investigations and might be approachable using

recently developed techniques monitoring single-cell gene
expression dynamics (Cao et al., 2020; Erhard et al., 2019).
These experiments should be performed at multiple time points
to comprehensively understand how the single-cell transcrip-
tome landscape changes over time after 5FU treatment.
Tumor suppressor p53 is an important DNA-damage-regu-

lated transcription factor that is responsible for the regulation
of many genes that are group specifically expressed. Through
several elegant studies, it was shown that transient pulses of
p53 activation can produce cell-cycle arrest, while a sustained
activation can lead to apoptosis (Hafner et al., 2019; Purvis
and Lahav, 2013). Based on those earlier studies, we speculate
that, in our experiments, the apoptotic group cells underwent
prolonged p53 activation, while the checkpoint group cells pro-
duced transient pulses of p53 activation. This hypothesis is
consistent with our observation that the ISG15-mediated posi-
tive-feedback loop, which can produce sustained p53 activation
(Park et al., 2016), was more prominent in the apoptotic group,
while the MDM2-mediated negative-feedback loop, which is
critical for producing pulse responses (Batchelor et al., 2009),
was more prominent in the checkpoint and stress groups. The
potential role of p53 in producing heterogeneous transcriptome
responses is also consistent with our observation that single-cell
transcriptome heterogeneity in the DNA damage response is
more pronounced in p53-proficient RKO and HCT116 cells
than in p53-mutated SW480 cells. In the future, technologies
such as single-cell ChIP-seq (Grosselin et al., 2019) could be
used to further characterize the heterogeneous p53 responses
across cells undergoing different fates. Mechanistic studies us-
ing gene knockouts or mutations should also be performed to
clarify the role of p53 in heterogeneous transcriptome responses
after DNA damage.
In summary, our work provides a snapshot of how individual

cells shape their transcriptome in response to DNA damage.
This work unveils information about how single-cell gene
expression patterns are diversified across different subgroups
undergoing distinct cell fates. By revealing cell-fate-specific
transcriptome patterns, we open an avenue for future studies
to further explore heterogeneous cancer cell responses to gen-
otoxic chemotherapy, such as fractional killing and chemoresist-
ant tumor recurrence.
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