2024 ADCs testing
bulk RNA-seq
DEG analysis
Differentially Expressed Genes were collected by the following comparisons.
1. CND1 vs CTRL
library(DESeq2)
count.mtx = counts
cont = "CTRL"
tret = "CND1"
cols = c(c(1:3), c(4:6))
cond = c(rep(cont,3),
rep(tret,3))
count.mtx = count.mtx[, cols]
# Generate info table
info <- data.frame(matrix(nrow = ncol(count.mtx), ncol = 2))
colnames(info) <- c('sample', 'cond')
info$sample <- colnames(count.mtx)
info$cond <- cond
# DESeq
dds <- DESeqDataSetFromMatrix(count.mtx, info, ~ cond)
dds <- DESeq(dds)
res <- results(dds)
res <- data.frame(res)
2. CND2 vs CTRL
library(DESeq2)
count.mtx = counts
cont = "CTRL"
tret = "CND2"
cols = c(c(1:3), c(7:9))
cond = c(rep(cont,3),
rep(tret,3))
count.mtx = count.mtx[, cols]
# Generate info table
info <- data.frame(matrix(nrow = ncol(count.mtx), ncol = 2))
colnames(info) <- c('sample', 'cond')
info$sample <- colnames(count.mtx)
info$cond <- cond
# DESeq
dds <- DESeqDataSetFromMatrix(count.mtx, info, ~ cond)
dds <- DESeq(dds)
res <- results(dds)
res <- data.frame(res)
3. CND3 vs CTRL
library(DESeq2)
count.mtx = counts
cont = "CTRL"
tret = "CND3"
cols = c(c(1:3), c(10:12))
cond = c(rep(cont,3),
rep(tret,3))
count.mtx = count.mtx[, cols]
# Generate info table
info <- data.frame(matrix(nrow = ncol(count.mtx), ncol = 2))
colnames(info) <- c('sample', 'cond')
info$sample <- colnames(count.mtx)
info$cond <- cond
# DESeq
dds <- DESeqDataSetFromMatrix(count.mtx, info, ~ cond)
dds <- DESeq(dds)
res <- results(dds)
res <- data.frame(res)
fc = 1.5
pval = 0.05
res = res %>% mutate(DE=ifelse(log2FoldChange >= log2(fc) & pvalue < pval, 'UP',
ifelse(log2FoldChange <= -log2(fc) & pvalue < pval, 'DN','no_sig')))
res$DE = factor(res$DE, levels = c('UP','DN','no_sig'))
res3 =res
deg1 = res1 %>% filter(!(DE =="no_sig")) %>% rownames()
deg2 = res2 %>% filter(!(DE =="no_sig")) %>% rownames()
deg3 = res3 %>% filter(!(DE =="no_sig")) %>% rownames()
degs = union(deg1,union(deg2,deg3))
cat(paste0("The number of all DEGs is ", length(degs)))
## The number of all DEGs is 2226
KMEANS clustering to identify variable features
## Prepare input data
input.data = tpms[degs,]
## Scaled
input.data <- t(apply(input.data, 1, function(x) (x - mean(x)) / sd(x)))
## Define function
kmeans.k <- function(k, input.data, title) {
# Set a consistent seed for reproducibility
set.seed(1234)
# Perform k-means clustering
fit <- kmeans(input.data, centers = k, nstart = k)
fit.cluster <- fit$cluster %>% data.frame()
# Assign column name for cluster identifiers
colnames(fit.cluster) <- 'cluster'
# Use row names from the input data
rownames(fit.cluster) <- rownames(input.data)
# Arrange data frame by cluster for better visualization
fit.cluster <- fit.cluster %>% arrange(cluster)
# Factorize the cluster numbers to use in the annotation
fit.cluster$cluster <- factor(fit.cluster$cluster)
# Prepare annotation data frame
df.anno <- fit.cluster
# Generate a heatmap using pheatmap with specified color palette and settings
p <- pheatmap::pheatmap(input.data[rownames(df.anno),], cluster_cols = F,
cluster_rows = F, show_rownames = F, annotation_row = df.anno,
col = colorRampPalette(c("navy", "white", "red"))(1000),
fontsize_row = 6, fontsize_col = 10,
main = title, gaps_col = c(3,6,9))
# Return a list containing the heatmap object and the annotation data frame
return(list(plot = p, annotation = df.anno))
}
## Perform kmeans clustering
kmeans.out1=kmeans.k(k = 2, input.data=input.data, title="clusters : 2")
Cluster number : 2
k=2
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "CYP26B1" "PRSS22" "YBX2" "CX3CL1" "CACNA1G" "USH1C"
## [7] "CEACAM21" "NOS2" "CD79B" "NFIX" "TENM1" "NRXN3"
## [13] "HSD17B6" "CD44" "APBA2" "TRIO" "MYO16" "RIPOR3"
## [19] "ANO2" "ARHGAP6" "ROS1" "HDAC9" "LMO3" "COL9A2"
## [25] "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "COL23A1" "FSTL4"
## [31] "CCDC85A" "PHF21B" "DCBLD2" "CDK14" "CDK17" "LZTS1"
## [37] "LIMCH1" "CHI3L2" "NHERF2" "ME1" "CTNNA2" "TRAM1"
## [43] "SYT1" "RASGRP2" "CAMK2A" "RPS6KA2" "SEMA3C" "RASAL2"
## [49] "FNDC3B" "CACNG4"
## Cluster2 genes 50 selection :
## [1] "TMEM132A" "DCN" "MTMR11" "CLCA4" "C8B"
## [6] "BIRC3" "MYOC" "SLC18A1" "TNC" "TG"
## [11] "KITLG" "PTGER3" "SERPINB3" "PRDM1" "CREB3L3"
## [16] "PIGV" "CA11" "CCN5" "DMRT3" "COL17A1"
## [21] "NAV3" "PITX1" "HES2" "ST6GALNAC2" "LMCD1"
## [26] "CDH19" "ABCB11" "CA12" "PLD1" "ATP12A"
## [31] "FBLN1" "AMPH" "DUSP13B" "PKP1" "COL19A1"
## [36] "FOLH1" "FAT2" "CETP" "AAMDC" "TMEM40"
## [41] "TGM1" "GABRP" "TPSD1" "SEC14L3" "SLC35E4"
## [46] "SOX10" "TTC28" "TTLL1" "NEFH" "CBX7"
Cluster number : 3
k= 3
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "CYP26B1" "PRSS22" "YBX2" "CX3CL1" "CEACAM21" "NOS2"
## [7] "CD79B" "NFIX" "TENM1" "NRXN3" "CD44" "APBA2"
## [13] "TRIO" "MYO16" "ANO2" "ARHGAP6" "ROS1" "LMO3"
## [19] "COL9A2" "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "COL23A1"
## [25] "CCDC85A" "PHF21B" "DCBLD2" "CDK14" "CDK17" "LZTS1"
## [31] "NHERF2" "ME1" "CTNNA2" "TRAM1" "SYT1" "RASGRP2"
## [37] "RPS6KA2" "SEMA3C" "CACNG4" "ARHGAP15" "MAP2" "SLC4A4"
## [43] "COL5A3" "CXCL2" "CADPS2" "ACHE" "PHACTR3" "TPX2"
## [49] "DOCK3" "BIRC5"
## Cluster2 genes 50 selection :
## [1] "TMEM132A" "DCN" "MTMR11" "CLCA4" "C8B"
## [6] "BIRC3" "MYOC" "SLC18A1" "TNC" "TG"
## [11] "KITLG" "SERPINB3" "PRDM1" "CREB3L3" "PIGV"
## [16] "CA11" "CCN5" "DMRT3" "COL17A1" "PITX1"
## [21] "HES2" "ST6GALNAC2" "CDH19" "ABCB11" "CA12"
## [26] "PLD1" "ATP12A" "FBLN1" "DUSP13B" "PKP1"
## [31] "COL19A1" "FOLH1" "FAT2" "CETP" "TMEM40"
## [36] "TGM1" "GABRP" "TPSD1" "SEC14L3" "SLC35E4"
## [41] "SOX10" "TTC28" "TTLL1" "CBX7" "PROCR"
## [46] "PTK6" "SIRPB1" "TNNC2" "GUCY2F" "ACOD1"
## Cluster3 genes 50 selection :
## [1] "CACNA1G" "USH1C" "HSD17B6" "RIPOR3" "HDAC9"
## [6] "PTGER3" "FSTL4" "LIMCH1" "CHI3L2" "NAV3"
## [11] "CAMK2A" "LMCD1" "RASAL2" "FNDC3B" "AMPH"
## [16] "BRINP1" "PTPRH" "C1QTNF3" "AAMDC" "HEPH"
## [21] "ICAM1" "NRCAM" "TGFB2" "CDC45" "CDC6"
## [26] "NEFH" "SALL4" "SLC17A9" "NALCN" "MEOX2"
## [31] "SORCS1" "CSF3" "ABCC3" "ACSS3" "FOXM1"
## [36] "GNB3" "TPD52L1" "BACH2" "GMDS" "TBX18"
## [41] "C7" "PDE1A" "GRB14" "REG1A" "ST6GALNAC5"
## [46] "PPP4R4" "POPDC2" "CSMD2" "CD244" "PHF24"
Cluster number : 4
k= 4
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "CACNA1G" "USH1C" "HSD17B6" "RIPOR3" "HDAC9"
## [6] "FSTL4" "LIMCH1" "CHI3L2" "NAV3" "CAMK2A"
## [11] "LMCD1" "RASAL2" "FNDC3B" "BRINP1" "PTPRH"
## [16] "C1QTNF3" "HEPH" "ICAM1" "NRCAM" "TGFB2"
## [21] "CDC45" "CDC6" "SALL4" "SLC17A9" "MEOX2"
## [26] "SORCS1" "CSF3" "ABCC3" "ACSS3" "FOXM1"
## [31] "GNB3" "TPD52L1" "GMDS" "TBX18" "C7"
## [36] "PDE1A" "GRB14" "REG1A" "ST6GALNAC5" "PPP4R4"
## [41] "POPDC2" "CSMD2" "PHF24" "IRF1" "MASP1"
## [46] "PKMYT1" "ADM2" "MCHR1" "LIF" "ISLR"
## Cluster2 genes 50 selection :
## [1] "CYP26B1" "PRSS22" "YBX2" "CX3CL1" "CEACAM21" "NOS2"
## [7] "CD79B" "NFIX" "TENM1" "NRXN3" "CD44" "APBA2"
## [13] "TRIO" "MYO16" "ANO2" "ARHGAP6" "ROS1" "LMO3"
## [19] "COL9A2" "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "COL23A1"
## [25] "CCDC85A" "PHF21B" "DCBLD2" "CDK14" "CDK17" "LZTS1"
## [31] "NHERF2" "ME1" "CTNNA2" "TRAM1" "SYT1" "RASGRP2"
## [37] "RPS6KA2" "SEMA3C" "CACNG4" "ARHGAP15" "MAP2" "SLC4A4"
## [43] "COL5A3" "CXCL2" "CADPS2" "ACHE" "PHACTR3" "TPX2"
## [49] "DOCK3" "BIRC5"
## Cluster3 genes 50 selection :
## [1] "COL19A1" "ACSBG1" "RP1" "HOXA5" "PACRG" "CLDN16"
## [7] "PFKFB4" "HHLA2" "GDA" "VPREB3" "RGN" "TNS4"
## [13] "CPLANE2" "SAA2" "BLK" "STRA6" "TTC6" "WDR93"
## [19] "SCN1A" "MAL2" "CACNA1C" "ANK3" "CCDC74B" "KIF5A"
## [25] "SNX22" "SLC34A2" "LRRC43" "ESYT3" "ADGRG5" "CARMIL2"
## [31] "FCRL1" "GRM2" "HHIP" "DEUP1" "PEX11A" "PHYHIP"
## [37] "RASA4B" "AQP4" "TNFRSF10C" "CRYBG2" "NAALADL2" "BRICD5"
## [43] "ROBO2" "FAF1" "KIAA0825" "PRAME" "SLC38A3" "SBSN"
## [49] "PTPRT" "RANBP17"
## Cluster4 genes 50 selection :
## [1] "TMEM132A" "DCN" "MTMR11" "CLCA4" "C8B"
## [6] "BIRC3" "MYOC" "SLC18A1" "TNC" "TG"
## [11] "KITLG" "PTGER3" "SERPINB3" "PRDM1" "CREB3L3"
## [16] "PIGV" "CA11" "CCN5" "DMRT3" "COL17A1"
## [21] "PITX1" "HES2" "ST6GALNAC2" "CDH19" "ABCB11"
## [26] "CA12" "PLD1" "ATP12A" "FBLN1" "AMPH"
## [31] "DUSP13B" "PKP1" "FOLH1" "FAT2" "CETP"
## [36] "AAMDC" "TMEM40" "TGM1" "GABRP" "TPSD1"
## [41] "SEC14L3" "SLC35E4" "SOX10" "TTC28" "TTLL1"
## [46] "NEFH" "CBX7" "PROCR" "PTK6" "SIRPB1"
Cluster number : 5
k= 5
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "COL19A1" "ACSBG1" "RP1" "HOXA5" "TFR2" "PACRG"
## [7] "CLDN16" "PFKFB4" "GDA" "VPREB3" "RGN" "TNS4"
## [13] "CPLANE2" "SAA2" "BLK" "STRA6" "TTC6" "WDR93"
## [19] "SCN1A" "CACNA1C" "ANK3" "CCDC74B" "KIF5A" "SNX22"
## [25] "SLC34A2" "LRRC43" "ESYT3" "ADGRG5" "CARMIL2" "FCRL1"
## [31] "HHIP" "DEUP1" "PEX11A" "PHYHIP" "RASA4B" "AQP4"
## [37] "TNFRSF10C" "CRYBG2" "NAALADL2" "BRICD5" "FAF1" "KIAA0825"
## [43] "PRAME" "SBSN" "PTPRT" "RANBP17" "NT5M" "IGLV4-69"
## [49] "IGLV6-57" "IGLV1-51"
## Cluster2 genes 50 selection :
## [1] "HDAC9" "NAV3" "CAMK2A" "RASAL2" "FNDC3B" "AMPH" "HEPH"
## [8] "ICAM1" "TGFB2" "SALL4" "SLC17A9" "NALCN" "ACOD1" "MEOX2"
## [15] "CDH23" "SORCS1" "CSF3" "ACSS3" "FOXM1" "TPD52L1" "BACH2"
## [22] "C7" "HHLA2" "PDE1A" "GRB14" "PPP4R4" "CD244" "H2BC11"
## [29] "CDKN1A" "MASP1" "PKMYT1" "ADM2" "DOCK4" "ISLR" "KIF1A"
## [36] "UNC13A" "HRC" "COL5A1" "IDO1" "TBC1D5" "SLC6A11" "KANK4"
## [43] "CHRM3" "TRPC4" "APLNR" "AMHR2" "CYP19A1" "PCDH10" "RBP5"
## [50] "RTN1"
## Cluster3 genes 50 selection :
## [1] "CACNA1G" "USH1C" "HSD17B6" "RIPOR3" "PTGER3"
## [6] "FSTL4" "PHF21B" "LIMCH1" "CHI3L2" "LMCD1"
## [11] "BRINP1" "PTPRH" "C1QTNF3" "NRCAM" "CDC45"
## [16] "CDC6" "EEF1A2" "KLC3" "ABCC3" "MAPK10"
## [21] "KIAA1549L" "GNB3" "GMDS" "TBX18" "REG1A"
## [26] "ST6GALNAC5" "POPDC2" "CSMD2" "PHF24" "IRF1"
## [31] "SLC2A4RG" "LRFN1" "LIF" "ADCY4" "PRRG3"
## [36] "FIBCD1" "MICAL2" "MRO" "DTNA" "ITGA7"
## [41] "PCNX2" "POU2F3" "CTRL" "LHX9" "GALNT13"
## [46] "ACKR2" "CDCA5" "PARD3" "MKI67" "PLA2R1"
## Cluster4 genes 50 selection :
## [1] "TMEM132A" "DCN" "MTMR11" "CLCA4" "C8B"
## [6] "BIRC3" "MYOC" "SLC18A1" "TNC" "TG"
## [11] "KITLG" "SERPINB3" "PRDM1" "CREB3L3" "PIGV"
## [16] "CA11" "CCN5" "DMRT3" "COL17A1" "PITX1"
## [21] "HES2" "ST6GALNAC2" "CDH19" "ABCB11" "CA12"
## [26] "PLD1" "ATP12A" "FBLN1" "DUSP13B" "PKP1"
## [31] "FOLH1" "FAT2" "CETP" "AAMDC" "TMEM40"
## [36] "TGM1" "GABRP" "TPSD1" "SEC14L3" "SLC35E4"
## [41] "SOX10" "TTC28" "TTLL1" "NEFH" "CBX7"
## [46] "PROCR" "PTK6" "SIRPB1" "TNNC2" "GUCY2F"
## Cluster5 genes 50 selection :
## [1] "CYP26B1" "PRSS22" "YBX2" "CX3CL1" "CEACAM21" "NOS2"
## [7] "CD79B" "NFIX" "TENM1" "NRXN3" "CD44" "APBA2"
## [13] "TRIO" "MYO16" "ANO2" "ARHGAP6" "ROS1" "LMO3"
## [19] "COL9A2" "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "COL23A1"
## [25] "CCDC85A" "DCBLD2" "CDK14" "CDK17" "LZTS1" "NHERF2"
## [31] "ME1" "CTNNA2" "TRAM1" "SYT1" "RASGRP2" "RPS6KA2"
## [37] "SEMA3C" "CACNG4" "ARHGAP15" "MAP2" "SLC4A4" "COL5A3"
## [43] "CXCL2" "CADPS2" "ACHE" "PHACTR3" "TPX2" "DOCK3"
## [49] "BIRC5" "PITPNM3"
Cluster number : 6
k= 6
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "CLCA4" "COL19A1" "ACSBG1" "HOXA5" "TFR2" "EFNB3"
## [7] "CLDN16" "CFAP92" "GDA" "CFP" "PNCK" "TNS4"
## [13] "CPLANE2" "WDR93" "CCDC74B" "SLC34A2" "LRRC43" "ADGRG5"
## [19] "CARMIL2" "FCRL1" "EFHB" "DEUP1" "PEX11A" "RASA4B"
## [25] "TNFRSF10C" "CRYBG2" "PRAME" "SLC38A3" "MB" "NT5M"
## [31] "ETS2-AS1" "IGHV1-46" "CYTOR" "SOX21-AS1" "PLCXD2" "GPR162"
## [37] "LINC01415" "LINC01127" "CD38" "ZMYND10" "DNAH9" "DLEC1"
## [43] "FUZ" "LRRC23" "PLEKHB1" "CLXN" "C6" "ATP2C2"
## [49] "BCAS1" "ZMYND12"
## Cluster2 genes 50 selection :
## [1] "CYP26B1" "CX3CL1" "CEACAM21" "NOS2" "TENM1" "CD44"
## [7] "TRIO" "MYO16" "ANO2" "ARHGAP6" "ROS1" "LMO3"
## [13] "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "CCDC85A" "DCBLD2"
## [19] "CDK14" "LZTS1" "NHERF2" "ME1" "TRAM1" "RASGRP2"
## [25] "RPS6KA2" "SEMA3C" "CACNG4" "ARHGAP15" "MAP2" "SLC4A4"
## [31] "COL5A3" "CADPS2" "TPX2" "DOCK3" "BIRC5" "PITPNM3"
## [37] "ZFHX4" "IL11" "SUSD2" "RASL10A" "ACR" "NFKBIA"
## [43] "GINS1" "MYBL2" "EEF1A2" "SYNDIG1" "ZC3H12B" "CCL22"
## [49] "SLC7A5" "CEMIP"
## Cluster3 genes 50 selection :
## [1] "HDAC9" "NAV3" "CAMK2A" "RASAL2" "FNDC3B" "AMPH" "HEPH"
## [8] "ICAM1" "TGFB2" "SALL4" "SLC17A9" "NALCN" "ACOD1" "MEOX2"
## [15] "CDH23" "SORCS1" "CSF3" "ACSS3" "FOXM1" "TPD52L1" "BACH2"
## [22] "C7" "HHLA2" "PDE1A" "GRB14" "PPP4R4" "CD244" "H2BC11"
## [29] "CDKN1A" "MASP1" "PKMYT1" "ADM2" "DOCK4" "ISLR" "KIF1A"
## [36] "UNC13A" "HRC" "COL5A1" "IDO1" "TBC1D5" "SLC6A11" "KANK4"
## [43] "CHRM3" "TRPC4" "APLNR" "AMHR2" "CYP19A1" "PCDH10" "RBP5"
## [50] "RTN1"
## Cluster4 genes 50 selection :
## [1] "CACNA1G" "USH1C" "HSD17B6" "RIPOR3" "PTGER3"
## [6] "FSTL4" "PHF21B" "LIMCH1" "CHI3L2" "LMCD1"
## [11] "BRINP1" "PTPRH" "C1QTNF3" "NRCAM" "CDC45"
## [16] "CDC6" "KLC3" "ABCC3" "MAPK10" "KIAA1549L"
## [21] "GNB3" "GMDS" "TBX18" "REG1A" "ST6GALNAC5"
## [26] "POPDC2" "CSMD2" "PHF24" "IRF1" "SLC2A4RG"
## [31] "LRFN1" "LIF" "ADCY4" "PRRG3" "FIBCD1"
## [36] "MICAL2" "MRO" "DTNA" "ITGA7" "PCNX2"
## [41] "POU2F3" "CTRL" "LHX9" "GALNT13" "ACKR2"
## [46] "PARD3" "MKI67" "PLA2R1" "TMPRSS11D" "HS3ST3A1"
## Cluster5 genes 50 selection :
## [1] "TMEM132A" "DCN" "MTMR11" "C8B" "BIRC3"
## [6] "MYOC" "SLC18A1" "TNC" "TG" "KITLG"
## [11] "SERPINB3" "PRDM1" "CREB3L3" "PIGV" "CA11"
## [16] "CCN5" "DMRT3" "COL17A1" "PITX1" "HES2"
## [21] "ST6GALNAC2" "CDH19" "ABCB11" "CA12" "PLD1"
## [26] "ATP12A" "FBLN1" "DUSP13B" "PKP1" "FOLH1"
## [31] "FAT2" "CETP" "AAMDC" "TMEM40" "TGM1"
## [36] "GABRP" "TPSD1" "SEC14L3" "SLC35E4" "SOX10"
## [41] "TTC28" "TTLL1" "NEFH" "CBX7" "PROCR"
## [46] "PTK6" "SIRPB1" "TNNC2" "GUCY2F" "DHRS12"
## Cluster6 genes 50 selection :
## [1] "PRSS22" "YBX2" "CD79B" "NFIX" "NRXN3" "APBA2"
## [7] "COL9A2" "COL23A1" "CDK17" "CTNNA2" "SYT1" "CXCL2"
## [13] "ACHE" "PHACTR3" "CRISPLD2" "RP1" "HGFAC" "POU2AF1"
## [19] "PACRG" "PFKFB4" "CR2" "CRHR1" "SOHLH2" "SPINK4"
## [25] "C4BPA" "IL17C" "VPREB3" "ELL3" "RGN" "F12"
## [31] "KHDRBS3" "LGR6" "DCLK1" "MACROD1" "CD180" "SAA2"
## [37] "ECHDC3" "IGF2BP3" "BLK" "STRA6" "SLCO1C1" "TMEM132B"
## [43] "RDH16" "TTC6" "CDH11" "CDH13" "IMPA2" "FCRL5"
## [49] "DTL" "SCN1A"
Cluster number : 7
k= 7
kmeans.out=kmeans.k(k = k, input.data=input.data, title= paste0("clusters : ",k))
kmeans.out$plot
## Cluster1 genes 50 selection :
## [1] "PRSS22" "YBX2" "CD79B" "NFIX" "NRXN3" "APBA2"
## [7] "COL9A2" "COL23A1" "CDK17" "CTNNA2" "SYT1" "CXCL2"
## [13] "ACHE" "PHACTR3" "CRISPLD2" "RP1" "HGFAC" "POU2AF1"
## [19] "PACRG" "PFKFB4" "CR2" "CRHR1" "SOHLH2" "SPINK4"
## [25] "C4BPA" "IL17C" "VPREB3" "ELL3" "RGN" "F12"
## [31] "KHDRBS3" "LGR6" "DCLK1" "MACROD1" "CD180" "SAA2"
## [37] "ECHDC3" "IGF2BP3" "BLK" "STRA6" "SLCO1C1" "TMEM132B"
## [43] "RDH16" "TTC6" "CDH11" "CDH13" "IMPA2" "FCRL5"
## [49] "DTL" "SCN1A"
## Cluster2 genes 50 selection :
## [1] "CYP26B1" "CX3CL1" "CEACAM21" "NOS2" "TENM1" "CD44"
## [7] "TRIO" "MYO16" "ANO2" "ARHGAP6" "ROS1" "LMO3"
## [13] "LTBP1" "NEDD4L" "FOXP3" "LAMC3" "CCDC85A" "DCBLD2"
## [19] "CDK14" "LZTS1" "NHERF2" "ME1" "TRAM1" "RASGRP2"
## [25] "RPS6KA2" "SEMA3C" "CACNG4" "ARHGAP15" "MAP2" "SLC4A4"
## [31] "COL5A3" "CADPS2" "TPX2" "DOCK3" "BIRC5" "PITPNM3"
## [37] "ZFHX4" "IL11" "SUSD2" "RASL10A" "ACR" "NFKBIA"
## [43] "GINS1" "MYBL2" "EEF1A2" "SYNDIG1" "ZC3H12B" "CCL22"
## [49] "SLC7A5" "CEMIP"
## Cluster3 genes 50 selection :
## [1] "EFNB3" "CLDN16" "GDA" "CFP" "PNCK" "WDR93"
## [7] "CCDC74B" "LRRC43" "FCRL1" "EFHB" "DEUP1" "PEX11A"
## [13] "TNFRSF10C" "CRYBG2" "MB" "ETS2-AS1" "IGHV1-46" "PLCXD2"
## [19] "GPR162" "LINC01415" "CD38" "ZMYND10" "DNAH9" "DLEC1"
## [25] "FUZ" "LRRC23" "PLEKHB1" "CLXN" "C6" "ATP2C2"
## [31] "BCAS1" "ZMYND12" "TP63" "SPAG6" "TP73" "DNAAF6"
## [37] "PTHLH" "IL5RA" "TEKT2" "FMO2" "RSPH14" "RAB36"
## [43] "IFT27" "SAMD15" "SPEF1" "CCDC113" "SMPD3" "EYA1"
## [49] "IFT56" "B9D1"
## Cluster4 genes 50 selection :
## [1] "MTMR11" "C8B" "BIRC3" "MYOC" "SLC18A1" "RIPOR3"
## [7] "TG" "KITLG" "CDH19" "COL19A1" "AAMDC" "GUCY2F"
## [13] "ACSBG1" "ZFR2" "TFR2" "RASAL1" "PDGFRB" "CFAP92"
## [19] "PRRX1" "RGS4" "TGM3" "MCHR1" "ADCY4" "ALDH3B2"
## [25] "CPLANE2" "GSTM5" "MYCN" "FAIM2" "LIMD2" "IL1RN"
## [31] "SERPINA10" "IL19" "PPFIA4" "AFF3" "ALDH1L1" "MKI67"
## [37] "CCDC102B" "SPHKAP" "NCAM2" "EPHB1" "SLC24A2" "DHRS1"
## [43] "SLC34A2" "TMSB15B" "PTMS" "ADGRG5" "DRC7" "FCRL3"
## [49] "SHANK2" "CFAP47"
## Cluster5 genes 50 selection :
## [1] "HDAC9" "NAV3" "CAMK2A" "RASAL2" "FNDC3B" "AMPH" "HEPH"
## [8] "ICAM1" "TGFB2" "SALL4" "SLC17A9" "NALCN" "ACOD1" "MEOX2"
## [15] "CDH23" "SORCS1" "CSF3" "ACSS3" "FOXM1" "TPD52L1" "BACH2"
## [22] "C7" "HHLA2" "PDE1A" "GRB14" "PPP4R4" "CD244" "H2BC11"
## [29] "CDKN1A" "MASP1" "PKMYT1" "ADM2" "DOCK4" "ISLR" "KIF1A"
## [36] "UNC13A" "HRC" "COL5A1" "IDO1" "TBC1D5" "SLC6A11" "KANK4"
## [43] "CHRM3" "TRPC4" "APLNR" "AMHR2" "CYP19A1" "PCDH10" "RBP5"
## [50] "RTN1"
## Cluster6 genes 50 selection :
## [1] "TMEM132A" "DCN" "CLCA4" "TNC" "SERPINB3"
## [6] "PRDM1" "CREB3L3" "PIGV" "CA11" "CCN5"
## [11] "DMRT3" "COL17A1" "PITX1" "HES2" "ST6GALNAC2"
## [16] "ABCB11" "CA12" "PLD1" "ATP12A" "FBLN1"
## [21] "DUSP13B" "PKP1" "FOLH1" "FAT2" "CETP"
## [26] "TMEM40" "TGM1" "GABRP" "TPSD1" "SEC14L3"
## [31] "SLC35E4" "SOX10" "TTC28" "TTLL1" "NEFH"
## [36] "CBX7" "PROCR" "PTK6" "SIRPB1" "TNNC2"
## [41] "DHRS12" "NDRG4" "RHOV" "CA2" "TUBB4A"
## [46] "SLC17A7" "TLE6" "DYRK1B" "EBI3" "CLIP3"
## Cluster7 genes 50 selection :
## [1] "CACNA1G" "USH1C" "HSD17B6" "PTGER3" "FSTL4"
## [6] "PHF21B" "LIMCH1" "CHI3L2" "LMCD1" "BRINP1"
## [11] "PTPRH" "C1QTNF3" "NRCAM" "CDC45" "CDC6"
## [16] "KLC3" "ABCC3" "MAPK10" "KIAA1549L" "GNB3"
## [21] "GMDS" "TBX18" "REG1A" "ST6GALNAC5" "POPDC2"
## [26] "CSMD2" "PHF24" "IRF1" "SLC2A4RG" "LRFN1"
## [31] "LIF" "PRRG3" "FIBCD1" "MICAL2" "MRO"
## [36] "DTNA" "ITGA7" "PCNX2" "POU2F3" "CTRL"
## [41] "LHX9" "GALNT13" "ACKR2" "PARD3" "PLA2R1"
## [46] "TMPRSS11D" "HS3ST3A1" "THY1" "GRIP1" "SH3RF2"
Interpretation
The best k for the kmeans clustering is so far 6. k= 7 started to generated outlier group from CND2